A rough overview of Carbon sequestration

Will there be ever be a time again when we can live without the fear of climate change collapsing our Civilisation?

 

We live in a time and place of enormous change in both present and predicted in the future.

 

Is there a chance that we can collectively get off the tree and work together to build a climate resilient Civilisation that can drawdown Carbon emissions beyond zero emissions?

 

One word (that was two words). Leapfrogging. We need to free the emerging/developing economies from buying technologies that only enslave them in a future of climate uncertainty. The answer to this techno-Colonial problem is to leapfrog climate polluting technologies and assist people to purchase/build and use the best available appropriate technologies, or apptech, to solve the problems of today and prepare for climate resiliency in the future. It may all sound like grandiose hyperbole but seriously guys we are on the clock and we're running out of time faster than we can act. I have been researching apptech for a good decade or more. I have seen many promising designs over the years many which never get developed on any scale worthy of a just climate transition. I've become obsessed with the potential of biochar which has been researched, documented, and applied (in no particular order) by the likes of Professor Stephen Joseph, Dr Paul Taylor, Dr Johannes Lehmann, Dr Lukas Van Zwieten, Dr TLUD, Russell Burnett, Geoff Moxham, Kathleen Draper, Albert Bates, Hans-Peter Schmidt, Kelpie Wilson, Charmaster Dolph and many more. Could this be the silver bullet we are looking for? I've come to an early conclusion that biochar will be integrated through many industrial, agricultural and horticultural products and systems in the present and future. However, this is only part of the puzzle.

 

In the integrated Permachar systems I have designed there is technology that needs to be purchased. At the household scale, The Energy Kit (TEK) includes a Top-Lit Updraft (TLUD) stove eg. The Permastove V3, a battery bank, LED lights, a solar PV panel, USB cables, and a Capacitive Deionization (CDI) kit placed in series in a DIY water filtration system.

 

On the village scale, a solar PV panel, 12V AGM battery, Goal Zero Guardian and 12V Shurflo pump can be combined with a Kon-Tiki 'Rolls' biochar kiln, water tank, IBC container, irrigation line and fittings, drying shed and hammer mill. A village pelletiser to make fuel pellets from agricultural waste residue for TLUDs could also be purchased. I've made a growing inventory at: www.permachar.net/overview-of-permachar-systems. The ideal is that households do things on the small-scale with cheaper apptech and on the village/community level the more expensive components/apptech are used and biochar production and water filtration is conducted on a medium-scale for agriculture/horticulture.

 

Once you get to the large-scale of things, shipping container biochar kilns like that produced by 'Earth Systems' and used by companies such as 'Green Man Char' become applicable. Municipal green waste collected by councils and normally used for mulch could be used to produce biochar with these shipping container kilns. The councils could then use this biochar in their gardens and parks as well as selling it to their ratepayers at a reasonable price.

 

There are numerous propositions for long-term Carbon sequestration.

 

Biochar, produced via the pyrolysis of biomass in a low-oxygen environment, is probably the safest and most democratic way to do it. Plants with high Silica content such as grasses like bamboo (it grows on 6 continents) will probably have the longest-term Carbon sequestration. The Silica creates plantstones/phytoliths/PhytOCs/plant opals with the Carbon for sequestration over millenia timescales. I've read research that phytoliths were found from campfires 35,000 years ago and were still stable. Recently, I've read about the possibility of heavy metal sequestration in the phytolith complexes after using phytoremediation to remove heavy metals from contaminated soil (and potentially from spent biochar used in water filtration of polluted water with salt and heavy metals). Bamboo can be used for this purpose then biocharred in a biochar kiln such as the Kon-Tiki 'Rolls' (which is yet to be built) and would lock in the heavy metals and salt if present which could then be safely used for growing food. There's also evidence to suggest that the presence of biochar in soil adds additional Soil Organic Carbon (SOC) to the soil over time.

 

So what are the competing methods for Carbon sequestration?

 

Planting more trees (apparently President Bolsanaro isn't listening. More than half a billion trees have been logged in Amazon over the last year). I would argue that rather than growing forests, use biochar in the planting holes and grow agroforestry systems that include fodder/biomass for future biochar production used to expand the agroforestry system even further. There are many examples of this in Nepal. Arguably this is a type of Carbon farming. A good reference here is 'The Carbon Farming Solution' by Eric Toensmeier that describes perennial crops and regenerative agriculture for Carbon Farming.

 

Magnesium Oxide cement that sequesters Carbon during it's lifecycle. Dependent on the availability of the Magnesium from mines that might not be located in the right places (the 'Tyranny of Distance'/logistics).

 

Carbon Capture and Sequestration (CCS) at coal-fired power plants. Still only at demonstration stage and dependent on stable and empty aquifers located near the power plant. Some failures of this system have been recorded due to leaky aquifers eg. The first system built in the U.S. Also, a dead end for the Carbon ('dead Carbon' as opposed to 'Living Carbon' in the soil) that doesn't achieve any other economic purpose.

 

Machines that capture CO2, water and sunlight that produce Hydrogen Gas (H2) and 'green' ammonia (NH4) such as the project in South Australia. Looks very promising but various snags along the way for a Hydrogen economy.

 

Machines that just capture CO2 and produce bricks (or don't produce anything useful at all).

 

Wooden/bamboo buildings. This is really only medium-term C sequestration but if you go to some countries like Japan there are wooden buildings still standing from 500 years ago or longer).

 

The remaining options are more like improved efficiencies in various sectors of the economy that reduce C emissions but not necessarily eliminate them. This is probably where most of the action will be over the coming decades. Renewable energy is probably the big one (that includes biochar if produced from sustainably managed biomass feedstock). More interesting is the opportunity afforded by cogeneration of biomass power plants that Combine Heat and Power (CHP) while producing biochar as a by-product. The Rainbowbeeeater 'ECHO2' is a fine example of this. A case study is the Holla Fresh herbs production facility in South Australia (http://holla-fresh.com.au/) where the heat is used to heat the greenhouse and the biochar is (presumably) used to grow the herbs. Electricity is also produced to power the greenhouses. Another power plant is the Allpowers Lab generator that is shipped on a pallet from the U.S., pyrolyses biomass and produces biochar as a by-product of power production (without heat production).

 

Cogeneration and the Kon-Tiki biochar kiln.

 

The Kon-Tiki is a simple and effective way to turn waste biomass into biochar on the small to medium scale. My ultimate goal as a designer is to find a way to cogenerate heat and power from the Kon-Tiki kiln that produces biochar as it's primary product. No doubt Dr Paul Taylor is working on it too. Hot water production has potential using a copper coil inside the cone with attached water containers. With an adapter, essential oils can be produced as well which has been successfully implemented in Nepal. So far, I'm not aware of any wood vinegar being produced from a Kon-Tiki. There are possibilities to attach Thermoelectric Generators (TEGs) to the kilns but I'm not aware of any cheap TEGs that can be retrofitted - possibly at the base of the kiln. A BBQ grill and rotisserie can be added but maybe for the time being that's as good as it gets. Any ideas, please contact me!

 

So there we have it - a cook's tour of Carbon sequestration with many plotholes!

 

Write a comment

Comments: 0